Historical transfer of nasality between consonantal onset and vowel
From C to V or from V to C?

Alexis Michaud, Guillaume Jacques and Robert L. Rankin
Centre national de la recherche scientifique (LACITO-CNRS & CRLAO-CNRS) / University of Kansas

Comparative data from several language families show that nasality can be transferred between a syllable-initial consonant cluster and the following vowel. The cases reported to date are summarized, and a new analysis is proposed for a set of Sino-Tibetan data. The evolution appears to go in both directions: from the consonantal onset to the following vowel in Tai-Kadai, Austronesian, Sino-Tibetan, Niger-Congo (Kwa) and Indo-European (Celtic), and from the vowel to the preceding consonant in Siouan. However, an examination of the conditions on these changes brings out an asymmetry. In most cases, transfers of nasality take place from a consonantal onset to a following vowel; the instances we found of a regular change in the opposite direction all come from languages where there is one of the following restrictions on nasal sounds: (i) nasal consonants are homophonemic (contextually predictable), or (ii) the opposition between nasal and oral vowels is neutralized after nasal consonants (in favor of nasal vowels).

Keywords: nasal onsets, nasal vowels, nasalization, consonant clusters, transphonologization, panchronic phonology, modeling of sound change

* Many thanks to Christian Bauer and Martine Mazaudon for their great generosity in sharing data, and for their helpful comments. Many thanks to Angélique Amelot, Patricia Basset, David Bradley, Michel Ferlus, Alexandre François, Huang Bufan 黃布凡, Larry Hyman, John Ohala, Thomas Pellard, Martha Ratliff, Elisa Roma, Kim Schulte, David Solnit, Elmar Ternes, Jacqueline Vaisseire, Rachel Walker and Leo Wetzel for enlightening comments and discussions, and to Oliver Niebuhr and Elmar Ternes for the German translation of the summary. All errors remain ours. Fieldwork on Yongning Na and Laze was funded as part of the research project "What Defines Qiang-ness? Towards a phylogenetic assessment of the Southern Qiangic languages of Muli" (PASQ), ANR-07-JCJC-0063.

Diachronica 29(2) (2012), 201–230. DOI 10.1075/dl.29.2.04mik
ISSN 0176-4225 / e-ISSN 1569–9714 © John Benjamins Publishing Company
Introduction

A widely attested diachronic change is the creation of nasal vowels from nasal codas, the latter disappearing in the process. Examples are found in many unrelated languages, for instance from Proto-Romance, which did not have nasal vowels, to modern Romance languages (Sampson 1999); in French, the masculine form of "good", /bɔ̃/ (spelt bon), alternates with the feminine /bɔ̃n/ bonne. This phenomenon figures prominently in discussions of universals of nasalization (e.g. Hajek 1997).

The historical transfer of nasality between a consonant and a following vowel is also attested, though less commonly. For instance, the transfer of nasality from an intervocalic consonant to a following vowel — and sometimes also to a preceding vowel — is observable as a synchronic alternation in Yal: /tʰiŋ/ "shellfish, Terebralia" has an alternate [tʰiyi], and /waŋa/ "manner, way" an alternate [wَاŋا] (Ozanne-Rivierre 1995:54, also Ozanne-Rivierre & Rivierre 1989); the nasal consonant turns into a (nasalized) spirant in the process.

The present article focuses specifically on the transfer of nasality between a consonantal onset and a vowel, raising the issue whether the evolution can go in both directions: from C to V, and from V to C. Section 1 presents cases in which the transfer is from C to V. Although superficially similar, the facts in Siouan (§2) actually reveal a reverse development: the spread of nasality in Siouan is from V to C. It thus seems as if the transfer of nasality could take place in both directions. However, the discussion (§3) points to a structural condition on the transfer of nasality between a complex consonantal onset and a vowel: in view of the data available, it appears that this transfer only takes place from the onset to the following vowel — except in languages where one of the following restrictions on nasal sounds exists: (i) nasal consonants are nonphonemic (contextually predictable), or (ii) the opposition between nasal and oral vowels is neutralized after nasal consonants.

1. Vowel nasalization from a consonantal onset

This section reviews cases of vowel nasalization from a consonantal onset; in view of these well-attested cases, a similar analysis is then proposed for a set of Sino-Tibetan comparative data.
1.1 The simplification of stop+nasal onsets in Kam-Sui (Tai-Kadai family, Southeast Asia)

The Lakkia language (a.k.a. Lajia) provides crucial insights into the origin of nasal vowels in the Kam-Sui subgroup of Tai-Kadai. The correspondences in Table 1 point to earlier initial clusters.

Table 1. Some correspondences between Sui (dialect: Sandong 三河) and Lakkia, after Ferlus 1996: 255. Throughout the present article, bold type is used to draw attention to crucial examples.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Sandong Sui</th>
<th>Lakkia</th>
<th>Reconstructed initial cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>bear</td>
<td>'muî'</td>
<td>kû'nî</td>
<td>'km-'</td>
</tr>
<tr>
<td>ditch</td>
<td>'mjënî'</td>
<td>kö'nî</td>
<td>'kn-'</td>
</tr>
<tr>
<td>face</td>
<td>'na'</td>
<td>kî'ë</td>
<td>'kn-'</td>
</tr>
<tr>
<td>maggot</td>
<td>'nunî'</td>
<td>kjü'nî</td>
<td></td>
</tr>
<tr>
<td>snow</td>
<td>'nui'</td>
<td>kj'ai</td>
<td>'tn-'</td>
</tr>
<tr>
<td>thick</td>
<td>'na'</td>
<td>ts'ai</td>
<td></td>
</tr>
<tr>
<td>heavy</td>
<td>-</td>
<td>tsak?</td>
<td></td>
</tr>
<tr>
<td>urine</td>
<td>'niu'</td>
<td>kjî'nu</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>'nit'</td>
<td>kjî'tî</td>
<td></td>
</tr>
</tbody>
</table>

Sandong Sui lost the stop part of the original cluster: the stop+nasal clusters *'km-* , *'kn-* , *'tn- and *'jn- merged with the preglottalized *'m-, *'n- and *'j- initials. The latter are preserved in Sui, e.g. /'ma'/"vegetables" , /'ma'/"flexible", both corresponding to a Proto-Kam-Sui *'m initial (Ferlus 1996: 251–252). Lakkia preserved the initial stop, while the nasal underwent lenition, nasalizing the following vowel in the process. Unexpectedly, the word "heavy" does not have a nasal vowel in Lakkia; such cases suggest that sporadic denasalizations took place after the creation of nasal vowels (Haudricourt 1967: 176).

Two Kam (a.k.a. Dong) dialects preserve forms that are very close to Lakkia — though without vowel nasalization — in the words "dog," "pig" and "flea": /k'wâj/, /k'wâj/ and /k'wet/ respectively in Sanjiang Kam (Solnit 1988a: 234). Lakkia syllables with an initial velar stop stand in a regular relation of correspondence with nasal-initial syllables in Kam and in Southwestern Tai dialects (Solnit 1988b: 232–234, Edmondson & Yang Quan 1988, Ferlus 1996: 239; on similar facts in the Kra subgroup, Ostapirat 2000).

1. The reconstruction concerns a hypothetical Proto-Kam-Sui. The symbol // stands for glottal constriction, see Smalley (1963: 389ff).
Data from Kam and Mulao reveal another type of change: distinctive nasality can spread to a preceding consonant. In Kam, *kʰm- > /ñw-; in Mulao, *kʰm > ʰn̥w/ (Ferlus 1996: 239–240). This is a striking structural parallel to the correspondences between two Austroasiatic languages, Laven and Nha Heun: the stop+nasal initial clusters of Laven correspond to nasal+medial in Nha Heun (Ferlus 1971). The evolution of medial nasals in Lakkia is summarized in Table 2.

Table 2. Evolution of medial nasals in Lakkia, after Ferlus 1996 258.

<table>
<thead>
<tr>
<th>Type of nasal consonant</th>
<th>Evolution in Lakkia</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>w</td>
</tr>
<tr>
<td>n</td>
<td>r (further changing to l or j)</td>
</tr>
<tr>
<td>p</td>
<td>j</td>
</tr>
<tr>
<td>η</td>
<td>j</td>
</tr>
</tbody>
</table>

The change found in Lakkia and Kam will be referred to below as *lenition of medials*, and the change in Sui as *loss of cluster-initial consonant*. Northern Sui dialects (Pandong 濮洞 and Yang’an 阳安) illustrate a possibility for the later evolution of glottal+nasal onsets: distinctive nasality is transferred onto the following vowel, and only the glottal remains, yielding [u̯] or [h̥]; the entire syllable is nasal, including the initial glottal sound (Haudricourt 1967: 176). The issue of the conditioning of the outcome of lenition (/ð/ or /u/) will be addressed in the general discussion, §3.3.2.

1.2 The simplification of stop+nasal onsets in Goidelic and Breton

The facts on vowel nasalization from an earlier TN or DJN onset (where T = voiceless stop, D = voiced stop, and N = nasal consonant) are well established in the literature on Goidelic and Breton.

In some dialects of Breton, the transfer of distinctive nasality from the onset to the vowel is observed in words that are reconstructed as having initial clusters *tn- and *kn- in Proto-Breton, as pointed out by Jackson 1986: 801–803. Table 3 presents his two examples.

Table 3. Two examples of correspondences between Proto-Breton *TNV and Modern Breton TrV. After Jackson 1986: 801, §1142.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Proto-Breton</th>
<th>Modern Breton</th>
</tr>
</thead>
</table>
| valley | *tnow | traoñ (IPA: /trāoñ/ or /tuə̯oñ/)
| | | "the lower part"
| nuts (collective) | *cnow (IPA: *cnow/) | krañ (IPA: /krāñ/ or /krə̯ñ/)

All rights reserved
The nasal vowel in Breton /krəõ/ “nuts” cannot be ascribed to the influence of a following nasal consonant: the -enn suffix in the singulative form of the word, kraoenn, cannot be the origin of the nasal vowel in the unsuffixed (collective) form of the word.

The change illustrated in Table 3 affected all Breton dialects except Vannetais, which stands apart from the other dialects in many respects. In Vannetais, the word for “nuts” (in the collective) is written kanaou. The nasal vowels resulting from this change are preserved in Léon and Cornouaille; in Trégüier, most words have undergone denasalization since the change took place. Given the rarity of the clusters at issue in Proto-Breton, examples are scarce.

As noted by Jackson (ibid.), a striking coincidence with these Breton facts is seen in the Goidelic dialects of northern Ireland and Scotland, and in Manx, where /tn-/, /kn-/, /gn-/, and /mn-/(a group not existing in Proto-Breton) became /tr-/, /kr-/, /gr-/ and /mr-/ with nasality of the following vowel. Table 4 provides examples from three dialects, one of which has lost nasality altogether.

Table 4. Some correspondences between Middle Irish and the Northern Irish dialect of Torr, illustrating the change from TNV and DNV to TV and DV, respectively. Data for the Torr dialect (and Old/Middle Irish) after Sommerfelt 1922:154; Applecross Gaedic data (and Scottish Gaelic) after Ternes 2006.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Middle Irish (unless otherwise specified)</th>
<th>Northern Irish dialect of Torr²</th>
<th>Applecross dialect of Scottish Gaelic</th>
</tr>
</thead>
<tbody>
<tr>
<td>usual</td>
<td>gnáthach</td>
<td>gréib(<)<x</td>
<td>–</td>
</tr>
<tr>
<td>to gain</td>
<td>gnóthughadh (from Dinneen’s dictionary)</td>
<td>gróihu<wa</td>
<td>–</td>
</tr>
<tr>
<td>completion, countenance</td>
<td>gnúis</td>
<td>grüti (<IPA: [gru:is])</td>
<td>–</td>
</tr>
<tr>
<td>grunt</td>
<td>gnusachtach</td>
<td>grüssaat<</td>
<td>–</td>
</tr>
<tr>
<td>hemp</td>
<td>cnáip</td>
<td>kraib<</td>
<td>–</td>
</tr>
<tr>
<td>bone</td>
<td>Old Irish cnáim; Scottish Gaelic cnámh</td>
<td>kraiv<</td>
<td>kruik<</td>
</tr>
<tr>
<td>hillock</td>
<td>Scottish Gaelic cnoc</td>
<td>–</td>
<td>kruik<</td>
</tr>
<tr>
<td>affair, matter</td>
<td>Scottish Gaelic gnothach</td>
<td>–</td>
<td>kruik<</td>
</tr>
</tbody>
</table>

2. In the dialect of Torr, nasality is absent on some items where it would be expected: “to knock down” is /kragyw/, cp. Middle Irish cnacaed; “heap of manure” is /krapwyyl/, cp. Middle Irish cnap(p); and “button” is /kripp/, cp. Middle Irish cnap. This parallels observations on sporadic denasalization in Lakka (§1.1), and has no bearing on the claims made in this article about transfers of nasality. Most dialects of Irish have lost nasality completely; this process began in the course of the 19th century and was completed by the mid-20th century.

All rights reserved
Note that this phenomenon of medial lenition bears no relationship to the phenomenon known as ‘Celtic lenition’, which results in synchronic consonantal alternations (see Martinet 1952 and Pich 2001) that have no influence on the vowel, e.g. “sea” in Applecross is /mur/, lenited form /vur/ (Ternes 2006: 104).

The facts set out in the present section are close to those noted in Tai-Kadai (§1.1). However, the Tai-Kadai languages being monosyllabic, they do not provide any insights into the possible diachronic outcome of stop+nasal clusters in word-medial position. The Goidelic and Breton facts demonstrate that the transfer of distinctive nasality from a consonant cluster to a following vowel only takes place in the case of onsets, not in medial position within a polysyllable. The same sequences which yield TnV or DnV in initial position remain unchanged in medial position, as illustrated in Table 5. These data provide an argument for the following syllabic division: /tat’.N’uw/, /dam.Nuw/, /f’am.Nax/, and /kag.Nuw/, i.e. stop+nasal sequences constitute a cluster when in onset position, whereas they belong in different syllables when in medial position.

Table 5. Examples of preservation of the stop+nasal consonant sequences \(\text{tn, cn, mn} \) in word-medial position in the Northern Irish dialect of Torr: Data from Sommerfelt 1922: 39, 50.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Middle Irish</th>
<th>Northern Irish dialect of Torr</th>
</tr>
</thead>
<tbody>
<tr>
<td>to please</td>
<td>taitnem</td>
<td>tat’N’uw</td>
</tr>
<tr>
<td>condemnation</td>
<td>damnadh</td>
<td>dam.Nuw</td>
</tr>
<tr>
<td>seaweed</td>
<td>fennach</td>
<td>f’am.Nax</td>
</tr>
<tr>
<td>to chew</td>
<td>cocnam</td>
<td>kag.Nuw</td>
</tr>
</tbody>
</table>

Appendix 1 presents additional evidence from Mon, Yao, Yi, and Tamang. For reasons of space, the Appendices are published online, at the following address: http://dx.doi.org/10.1075/dia.29.2.04mic.additional. The last example known to us is a change from ‘CVNV to CNV and finally to CV found in the Kwa branch of the Niger-Congo family (Hyman 1972, also Williamson 1973). The change was
under way in the Gwari language at the time when the data were collected: "For
example, *kNU and *gNU are already pronounced [k努] and [g努], where the
nasal release is not particularly pronounced. While I analyze both [CNV] and
[CV] as /CNV/ in Gwari, the phonetic realization will depend in each case on
the particular combination of C, N, and V. For example, /hNI/ is pronounced [sɪ]"
(Hyman 1972:176).

The Kwa facts, together with the Goidelic facts, contribute to a cross-linguistic
model of vowel nasalization from a preceding consonantal cluster by revealing
that this phenomenon can involve clusters other than stop+nasal. This is confirmed
below through the analysts of a new set of comparative data.

1.3 Vowel nasalization from a fricative+nasal onset: New comparative data
from Sino-Tibetan

Fv-kho Naxi, Yongning Na and Laze are three closely related Sino-Tibetan lan-
guages (see Jacques & Michaud 2011 and references therein). They all possess nas-
al vowels, which look like secondary developments since nasal vowels only occur
as part of /hV/ syllables (with some marginal cases of /tV/). This situation is ex-
actly parallel to cases described in §1.1 where nasal vowels are only found after a
glottal onset, i.e. in /hV/ or /tV/ syllables.

The Naxi, Na and Laze data are compared here with the Japhug variety of Rgya-
rlong (Jacques 2004, 2008) in Table 6. Superscript letters indicate tones: L(ow),
M(id), H(igh) and combinations thereof. In the syllables transcribed with nasal
vowels, nasalization actually lasts throughout the syllable: [hǐ], [hɨ], etc.

Table 6. Comparative vocabulary for five words in Rgyalrong and in Naxi, Na and Laze,
pointing to the diachronic development of distinctive nasality on vowel rhymes in Naxi,
Na and Laze from earlier */rN-/ onsets.

<table>
<thead>
<tr>
<th>Japhug dialect of Rgyalrong (嘉绒语/嘉绒语)</th>
<th>red</th>
<th>stand, 站</th>
<th>person, 人</th>
<th>hair (body hair), 毛</th>
<th>to stir-fry, 炒</th>
<th>two, 二</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rgyalrong (嘉绒语/嘉绒语)</td>
<td>yurni</td>
<td>rma ("stay at s.o.'s place")</td>
<td>tu-reme</td>
<td>tv-reme</td>
<td>rnu (loan from Tibetan)</td>
<td>snus</td>
</tr>
<tr>
<td>Fv-kho Naxi (未科纳西语/未科纳西南)</td>
<td>hɨL</td>
<td>hɨLM</td>
<td>hɨM</td>
<td>hɨH</td>
<td>–</td>
<td>njLM</td>
</tr>
<tr>
<td>Yongning Na (永宁纳语)</td>
<td>hɨL</td>
<td>hɨMH</td>
<td>hɨH</td>
<td>hɨH</td>
<td>hɨM hɨM</td>
<td>njH</td>
</tr>
<tr>
<td>Laze (木里纳西语/木里纳西语)</td>
<td>–</td>
<td>hɨH</td>
<td>hɨM</td>
<td>hɨL</td>
<td>–</td>
<td>njM</td>
</tr>
</tbody>
</table>

All rights reserved
As seen in Table 6, Rgyalrong has some initial clusters; indeed, it is the only language in this part of Sino-Tibetan that preserves a broad range of initial clusters. Rgyalrong provides more relevant evidence than Written Tibetan: taking the third word in Table 6 as an example, Written Tibetan does not have an initial cluster in the word for "person" (mi), whereas Rgyalrong has /rme/.

Table 6 brings out a correspondence between the /hN/ syllables of Naxi, Na and Laze and etyma with initial /rm-/ or /rn-/ in Rgyalrong.3 (The meaning of Rgyalrong /rma/., "to stay at someone's place", must be considered to be a development from the meaning "to stand"). On the analogy of the cases described above, we conclude that these /hN/ syllables do not simply result from rhotaglutephtita (a term coined by Matthes 1975 to refer to "an affinity between the feature of nasality and the articulatory involvement of the glottis"), but that they originate in earlier *CNV syllables. This analysis seems almost trivial in view of the wealth of examples from various languages set out above; it nonetheless constitutes a less than trivial contribution to the study of nasal vowels in Sino-Tibetan. The hypothesis that the nasal vowels found in some Sino-Tibetan languages could be attributed to the influence of syllable-initial nasals was already expressed by Huang Buan 1991; on the other hand, no hypotheses had been proposed heretofore as to which specific sequences of phonemes were involved in the change.4

The last example in Table 6, "two", illustrates the preservation in Naxi, Na and Laze of nasals that originate in onsets other than */rN-/.* It appears reasonable to hypothesize that the *CN- onsets that led to vowel nasalization all went through a */sN-/ stage; indeed, sN-initial cognates are observed in Tibetan for some of these items. (For general phonetic reflections on this topic see Ohala & Ohala 1993:233 and references therein: "children learning English sometimes pronounce topate [s] and [n] clusters as voiceless nasals"). Further details on nasal vowels in Naxi are provided in Online Appendix 2. As a conclusion to §1, all observed cases of nasalization from a consonantal onset are recapitulated in Table 7. The presentation adopted in Table 7 is not intended to suggest that the transfer of nasality to the vowel in CNV sequences begins as a consequence of a consonant shift: it is in fact plausible that the

3. The backdrop to this comparison is the hypothesis that there exists a Burm-Qiang subgroup within Sino-Tibetan, containing Lolo-Burmese and Qiangic (which includes Rgyalrong) together with the Naish languages, the latter being defined as including Naxi, Na and Laze (Jacques & Michaud 2011).

4. The analysis of nasal vowels as originating in initial clusters cannot be extended across-the-board to all the languages cited by Huang Buan 1991 (Southern Nu, Namuyi, Shixing and Pumi). For instance, in Pumi (a.k.a. Prini) and Shixing, nasal vowels are more widespread than in the Naish languages, some of them originating in nasal codas.

All rights reserved
vowel becomes nasalized first, e.g. (taking up the first Lakkia example in Table 7)
"TmV > *TmV > TwV.

Table 7. A recapitulation of cases of vowel nasalization from a consonantal onset. T = unvoiced stop, D = voiced stop; N = nasal consonant; V = vowel, Ń = nasal vowel; and C = obstruent consonant.

<table>
<thead>
<tr>
<th>Language</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakkia</td>
<td>*TmV > TwV; *TnV > TrV; *TŋV, *TŋV > TŋV</td>
</tr>
<tr>
<td>Breton</td>
<td>*TnV > TrV</td>
</tr>
<tr>
<td>Goidelic</td>
<td>*TNV > TrV; *DNV > DrV; *mnV > mrV</td>
</tr>
<tr>
<td>Kwa</td>
<td>*CVNV > CNV > CV</td>
</tr>
<tr>
<td>Phothisara Mon</td>
<td>tŋV > ḷwV</td>
</tr>
<tr>
<td>Northern Sui</td>
<td>ZN > rV or ŃV</td>
</tr>
<tr>
<td>Naish</td>
<td>*smV > ḷV</td>
</tr>
<tr>
<td>Miên, Yi/Lolo</td>
<td>*NV > ḷV, *NV > ḷV</td>
</tr>
<tr>
<td>Tamang</td>
<td>NV in free variation with ḷV</td>
</tr>
</tbody>
</table>

2. A reverse development: The transfer of nasality from a vowel to a preceding consonant in Siouan

At first blush, the same phenomenon whereby nasal vowels develop from preceding obstruent+nasal consonant clusters would appear to be found in Siouan languages — in virtually all subgroups. A correspondence such as Winnebago /-pánâ/ vs. Chiwere /-blâ/ ("ten"); full forms: Winnebago /kərèpânâ/, Chiwere /greəblâ/) looks like another case of transfer of nasality from a TN- onset, suggesting a reconstruction as *-pna. (Note that the disyllabic structure observed in Winnebago is an innovation: Proto-Siouan consonant clusters are broken by the insertion of a svarabhakti vowel in Winnebago [Dorsey 1885].) It would appear reasonable to extend to such cases the argument made by Hyman (1972: 176) about Kwa: "it seems much more natural to speak of the nasality as having shifted from the consonant to the vowel, i.e. [CNV] becomes [CV]. The reverse (with deminalization of V) would be very strange indeed". However, advances in the reconstruction of Proto-Siouan lead to the conclusion that the change was in fact the reverse: consonant nasalization from a following nasal vowel. The word for "ten" is actually to be reconstructed as *-wrâ, not *-pna.

5. Amerindianist phonetic transcriptions have been converted to IPA throughout, using the tilde for nasality (/ɪ/ instead of /i/) and indicating stress before the syllable instead of by an acute accent on the stress-bearing vowel.
Given the complexity of these facts, the present section is entirely devoted to their analysis. The general discussion (§3) will then address the general issue of the modeling of the transfer of nasality between a consonantal onset and a following vowel, suggesting a link between the direction of this transfer and the phonemic status of nasal consonants.

The Siouan language family includes more than a dozen languages spread across the central and eastern parts of the United States and the prairies of Canada. There are four major subgroups, outlined below:

I. Missouri River Siouan (Crow, Hidatsa)
II. Mandan
III. Mississippi Valley Siouan
 - Dakotan (Santee-Sisseton, Yankton-Yanktonais, Teton Lakhota, Assiniboine, Siouan)
 - Chiwere-Winnebago (†Ioway, †Otoe, †Missouria, Winnebago)
 - Dhegiha (Omaha, Ponca, †Kansa, †Osage, †Quapaw)
IV. Ohio Valley Siouan (†Tutelo, †Saponi, †Moniton, †Occoneechi, †Biloxi, †Ofo)

In this paper we will not deal with Ohio Valley Siouan as the available data were recorded over a century ago and cannot be verified. There is no reason to believe that they behaved any differently from their more westerly siblings, however.

Nasality is a distinctive feature of vowels in all but two of the sixteen or more languages. On the other hand, in some Siouan languages (certainly Mandan and probably Tutelo) nasality in consonants always depends on an environment adjacent to nasal vowels. Thus, while nasality must be considered phonemic for vowels, the same is not true for consonants. In two Siouan languages, Crow and Hidatsa, there are no longer either nasal vowels or phonemic nasal consonants; nasality has simply ceased to have a phonological role in these languages. (The Crow and Hidatsa data will not be set out here, but see Graczyk 2007 and Boyle 2007.) In the other Siouan languages the synchronic situation is often mixed but, as we shall see, it is clear that nasality has been passed historically to sonorant consonants from nasal vowels.

Siouan languages typically have a five-vowel oral system with a subset of at least two and most often three nasal vowels. In most languages something close to the reconstructed Proto-Siouan system is retained. Common Siouan vowels may be either long or short. The nasal subset has either two or three members with the rounded vowel being phonetically either high or mid, depending on the language.6

6. In Mandan, Dakotan, Chiwere (Ioway and Otoe), Winnebago and Tutelo the rounded nasal vowel is usually high, [ui], while in Dhegiha (Kansa, Osage and Quapaw), Biloxi and Ofo...
A number of both root and inflectional morphemes in nearly every Siouan language consist solely of a nasal vowel or a nasal vowel preceded by a boundary-marking glottal stop. For example Lakhota /ril/ "wear about the shoulders", /rû/ "use", "be", "wear" (three homophones); Kansa and Osage /ril/ "wear about the shoulders", /ró/ "be, do"; Ponca /ri/ "pack on the back", /íi/ "wear clothing", /-ul/ "an irrealis modal enclitic", /ra/ "wear as a ring" and /ra/ "do, be". There are cognates for most of these roots in most if not all Siouan languages. So nasality must be a distinctive feature of vowels in these languages, as there are no nasal consonants in the example morphemes to provide an assimilatory environment. Hollow (1970:19ff.) presents evidence why, in a generative phonological analysis, nasal vowels in Siouan cannot be considered to result from an abstract VN sequence.

The other side of the coin is that in most Siouan languages there are no nasal consonants unless followed by a nasal segment, normally a vowel, historically (and usually synchronically). In conservative languages like Mandan the nasal sonorants [n] and [m] may stand only before nasal vowels, and their oral counterparts, reflexes of *r and *w may stand only preceding oral vowels (Minfo 1997). Thus in Mandan there are no phonologically nasal consonants at all; consonant nasality is always assimilated from a following vowel. There are active morphophonological alternations that illustrate these processes. A normally oral inflectional prefix, such as /wa-/ "1sg agent", nasalizes completely to [mã] if a nasal sonorant follows, as in (1) (after Hollow 1970:22):

(1) /wa-ráte -oif/
 [má-náte -i]/
1sg stand.up MALE DECLARATIVE
 "I stand up"

This example also shows that the nasalization rule iterates from right to left. The /ã/ of /ráte/ nasalizes the preceding /r/, the resultant [n] nasalizes the preceding /a/ of /wa-/, and the resultant [ã] nasalizes the preceding /w/. Hollow (1970:22–23) gives an example of nasal spread across multiple syllables and several morpheme

7. In most published Dakota and Lakota dictionaries the nasalization diacritic on vowels is omitted following an m or n. This, of course, is just the opposite of the historical direction of nasalization.
boundaries. The seventh commandment as translated by a fluent Mandan speaker is provided in (2). There are vowel epenthesis and consonant cluster simplification rules at work in this verb phrase also, but they have no bearing on our topic. We adopt Hollow’s analysis of the grammatical morphemes in the utterance.

(2) /wa- wa- ra- rür -rix -ři -kt -oʃʃ/ [mä- má- nā- nūn ix -i-nūs-t -oʃʃ]

NEG₁ ABSOLUTIVE 2SG abduct NEG₂ 2PL POT MALE DECLARATIVE
[mämänänintxʷintšoʃʃ] “Thou shalt not commit adultery”

Additionally, a morpheme with an underlying nasal vowel and a phonetically nasalized consonant, e.g., /rū-/ , phonetically [nū] , 1PL fails to nasalize the sonorant if the nasal vowel undergoes coalescence with a verb-initial oral vowel in a conjugated stem, and the necessary nasalizing environment disappears. This rule, V₁V₂ > V₂, is common to every Siouan language. The Mandan verb “forget” illustrates this process:

1sg 'i- wa -kähāxik
2sg 'i- ra -kähāxik-oʃʃ
3sg 'i- -kähāxik-oʃʃ
1PL 'i- -kähāxik-oʃʃ

Note that, while first and second person agent prefixes are found between the instrumentive prefix, /i-/ , and the verb root, the first plural prefix always precedes instrumentive and most other prefixes. This is an idiosyncrasy of most other Siouan languages also. In this paradigm /rū-/ 1PL, normally [nū], appears in its oral allomorph, [r₁] , because the /nû/ is typically lost preceding an oral vowel, [r₁: < nû+i-] . This is further evidence that the underlying state of the sonorant consonant in [nû-] 1PL is the non-nasal /r/. The nearly pan-Siouan rule that emerges from the many examples of this sort is shown in (3). In Mandan this rule might be phrased as a constraint on entire syllables, but in most Siouan languages there are exceptions that will cause the rule to be phrased as it is here.

(3) [+sonorant] > [+nasal] / __[+nasal] /

Mandan, with its productive rule of iterative leftward nasal spread, must be quite close to the original Proto-Siouan state of affairs. Most of the other Siouan languages show this same rule to be more or less applicable. In the Mississippi Valley Siouan languages, including Lakhota/Dakota, Ioway-Otoe, Winnebago, Omaha-Ponca, Kansa, Osage and Quapaw, there is clear evidence for the rule, though there are exceptions in each language introduced in particular phonological environments and also in derivational morphemes that have been recently affixed to
stems. These latter cases show that the Siouan nasalization rule, although formerly completely regular, has ceased to spread across morpheme boundaries in some innovated constructions.

There are also at least some exceptions to the above rule in the widely-spoken Dakotan languages due to dialect mixture and/or denasalization of certain vowels. These factors have introduced an opposition between nasal and non-nasal sonorants in most of the languages. Thus in Lakhota (Ullrich 2008), the Teton dialect of Dakotan, we find such sets as /mâ/ “look!” (women's speech), /mâ/- “1sg. patient” and /wâ/ “arrow”; /mi/ “mine, my”, /wi/ “female” and /wî/ “sun, moon”.

Two of these instances, /wî/ “female” and /wâ/ “arrow”, illustrate a special set of circumstances that require comment. These morphemes are reflexes of Proto-Siouan lexemes in which the sonorant+nasal vowel sequences were followed by /h/. There are several other such cases. In precisely these cases *r preceding a nasal vowel fail to nasalize in Lakhota and often in Winnebago and Osage, as shown in Table 8.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Proto-Siouan</th>
<th>Lakhota</th>
<th>Winnebago</th>
<th>Osage</th>
<th>Kansa</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrow, chert</td>
<td>*wâke</td>
<td>'wâ</td>
<td>'mâ:</td>
<td>'mâ:</td>
<td>'mâ:</td>
</tr>
<tr>
<td>back, spine</td>
<td>*t-râke</td>
<td>Şâk'ahu</td>
<td>nârke</td>
<td>nâr'ka</td>
<td>nâr'ka</td>
</tr>
<tr>
<td>buy</td>
<td>*wihe</td>
<td>–</td>
<td>ru'wî</td>
<td>âyâi</td>
<td>jy'mî</td>
</tr>
<tr>
<td>swim, paddle</td>
<td>*t-wâke</td>
<td>nû'wâ (nî'wâ)</td>
<td>nî'wâ</td>
<td>nî'mâ</td>
<td>nî'mâ</td>
</tr>
<tr>
<td>shiver, shake</td>
<td>*jâjâke</td>
<td>Şâjâ'á</td>
<td>–</td>
<td>ýâjâ</td>
<td>ýâjâ</td>
</tr>
<tr>
<td>female</td>
<td>*wîhe</td>
<td>1'wijâ</td>
<td>-wû</td>
<td>-wî</td>
<td>-mî</td>
</tr>
</tbody>
</table>

There is an apparent exception: “breathe” is *rê-ha(-he) in Proto-Siouan, /nî'ja/ in Lakhota, /nî'ha/ in Winnebago, /nî/ in Osage and /nî/ in Kansa. The lack of nasal spread when the nasal vowel is followed by *h seems to be rather regular; we do not have an explanation.

As in Mandan, the Mississippi Valley Siouan subgroup also shows right-to-left iteration of the nasalization rule for sonorants, at least to a degree, but usually affecting only the immediately preceding phoneme. In Dakotan dialects iteration extends somewhat farther. Table 9 shows the correspondences for sonorant clusters preceding a nasal vowel.

Osage /brâska/, Lakhota /blaska/, Kansa /blaska/, Omaha-Ponca /bðâska/ and Quapaw /bðâska/ “flat” illustrate the oral outcome of the Proto-Siouan *w-r-cluster. Other *stop+rY and *stop+wY clusters are affected in Siouan languages. Reflexes of these are presented in Table 10. Note that Lakhota /g/ cannot function as a sonorant obstruct the way that /b/ and /d/ in Table 9 do because all instances

© 2012, John Benjamins Publishing Company
All rights reserved
Table 9. Examples illustrating leftward nasal spread in the correspondences resulting from Proto-Mississippian Valley Siouan (MVS) *wr clusters preceding a historically nasal vowel. Data are from the Comparative Siouan Dictionary, hereafter CSD (Carter et al. forthcoming).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>satisfied, enough</td>
<td>'innā</td>
<td>–</td>
<td>ibrā</td>
<td>–</td>
<td>*kwrā</td>
</tr>
<tr>
<td>smell</td>
<td>'mnā</td>
<td>'bnā</td>
<td>'brā</td>
<td>'blā</td>
<td>*wrā</td>
</tr>
<tr>
<td>three</td>
<td>γamni</td>
<td>δamni</td>
<td>δamni</td>
<td>γamni</td>
<td>*razwri</td>
</tr>
<tr>
<td>ten</td>
<td>wik'jemnā</td>
<td>k'debi</td>
<td>lebrā</td>
<td>leblā</td>
<td>*kjewrā</td>
</tr>
<tr>
<td>turn</td>
<td>-mnī</td>
<td>'bnī</td>
<td>b̥ri</td>
<td>b̥lī</td>
<td>*-wri</td>
</tr>
<tr>
<td>warped, twisted</td>
<td>pe'mnī</td>
<td>'bebnī</td>
<td>ñ'y'pebrī</td>
<td>beblī</td>
<td>*-wri</td>
</tr>
<tr>
<td>spread out to dry</td>
<td>'mnī</td>
<td>'akabnī</td>
<td>–</td>
<td>b̥lī</td>
<td>*-wri</td>
</tr>
</tbody>
</table>

of Lakhota /g/ go back to the Proto-Siouan obstruent *k and have a very different distribution overall, whereas Lakhota /b/ goes back to *w, and /l/ goes back to *r, both sonorants. In the D-dialects of Dakota, Proto-Siouan *r has the oral reflex /d/, which also functions as a sonorant even though it is phonetically an obstruent. In some Siouan languages, e.g., Crow and Hidatsa, [w, b, m] are all allophones of /wl/ and [r, l, d, n] are allophones of /tl/. For a more thorough discussion of sonorant obstruents, see Rice 1993; we believe that the Siouan data presented in this paper substantially support her conclusions.

Clusters involving velar obstruents followed by /t/ appear to resist nasalization preceding nasal vowels in most, but not all, Siouan languages. These include *kr and *xr clusters, but not *śr or *ťr clusters, both of which nasalize, sometimes even spontaneously. There do not seem to be any Proto-Siouan *pr or *tṛ clusters, nor obstruent+w clusters. Therefore there are no native nasalized obstruent+w outputs from the nasalization rule, although a few instances of Algonquian borrowings with /kwV/ yield Lakhota /gm/ and Chiwere /dw/, see discussion of "squash", below. Most Lakhota /gm/ clusters lack Proto-Siouan etymologies.
Table 10. Obstruent + sonorant clusters in several Siouan languages.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cold</td>
<td>'sní</td>
<td>sní</td>
<td>ní</td>
<td>hní</td>
<td>*sří</td>
</tr>
<tr>
<td>habitually</td>
<td>ŋá</td>
<td>-ńá</td>
<td>ná</td>
<td>-ńá</td>
<td>*fřá</td>
</tr>
<tr>
<td>dive</td>
<td>k’gnúka</td>
<td>–</td>
<td>ḥáke</td>
<td>ḥáge</td>
<td>*krúke</td>
</tr>
<tr>
<td>revile</td>
<td>ŋínű</td>
<td>knó</td>
<td>lóː</td>
<td>lóː</td>
<td>*krú</td>
</tr>
<tr>
<td>strike sparks, fry, burn</td>
<td>-xmi</td>
<td>xńí</td>
<td>xli</td>
<td>xli</td>
<td>*xří</td>
</tr>
<tr>
<td>migrate</td>
<td>–</td>
<td>ka’xńá</td>
<td>ka’xśá, ka’xáː</td>
<td>ga’xśá</td>
<td>*ka’xřák</td>
</tr>
<tr>
<td>bobcat (loan)⁸</td>
<td>ŋínű</td>
<td>–</td>
<td>flóka</td>
<td>fłóga</td>
<td>*příņó (?)</td>
</tr>
</tbody>
</table>

Although earlier generations of Siouanists (Wolff 1950:175, Matthews 1958, 1970:107) reconstructed the superficial *bl, *br, *pr or *mn clusters in Proto-Siouan for cognate sets such as those presented above, a more careful examination of the grammars of the Siouan languages enables us to correct these earlier reconstructions. Although all of the Mississippi Valley Siouan languages share the initial /b/ or /m/ of these clusters, it is important to consider the morphological source of these consonants in the proto-language. All of these instances of /b/ and /m/ have a source in one of two Proto-Siouan prefixes, either /wa-/ “inanimate classifier” or /wi-/ “animate classifier”, thus the initial member of virtually all of the /bl/, /br/, /bn/, /bũ/, and /mn/ clusters in the several languages goes back to Proto-Siouan *w (with regular syncope of the old initial syllable vowel). Understanding of the earlier morphology of these words reinforces our conclusion that nasalization has progressively been assimilated from right to left. The *wr clusters failed to assimilate nasalization in Osage and Kansa, partially assimilated it in Quapaw, and underwent complete nasalization in Lakota.

Synchronic morphophonological examples also exist to illustrate iterative nasal assimilation in Lakota. In Dakotan languages, we find nasalizing morphemes such as /-ktA/ “potential mode”. (The reason for the peculiar nasalizing nature of this morpheme lies in the fact that an additional element has been lost in Dakotan. The missing /-l/ “irrealis” is preserved in Omaha and Ponca. The entire construct is preserved in Winnebago where the potential mode marker is /-ikče/.) The synchronic effect of these morphemes on a preceding syllable coincides precisely with

⁸ This term for “bobcat” has sound allives across eastern North America including both Iroquoian languages and Tunic. It may not at all be that a Proto-Mississippi Valley Siouan reconstruction for the term even though there are at least some apparent cognates. The prototype for the terms apparently had a /tr/ or a /tw/ cluster however, and this is the closest we get to a /tr/ cluster in Siouan.
the diachronic change postulated in the *Comparative Siouan Dictionary*. In verb phrases stem-final oral vowels nasalize when followed by */ktA/*, and sonorants preceding these vowels also become nasalized, as in example (4):

(4) /b-le/ [ble] "I go" + /kte/ "potential mode" → /mnikte/ "I will/would go" (Rankin et al. 2003).

Our analysis receives additional support from the treatment of borrowings, e.g. the word for "squash, pumpkin", Lakhota /wa'gmú/, Chiwere /wa'dwá/, Winnebago /wi'fáwá/, which according to the *Comparative Siouan Dictionary* is borrowed from the Algonquian word for "squash" (Proto-Algonquian *éemíkhwaní*), apparently from a language where final *i* had dropped, such as Menominee /émíkhwan/. The Chiwere/Winnebago forms have to be explained by supposing a dissimilation: *kwaν* > *kwá* > *twá*, while the Lakhota form would result from assimilation: *kwaν* > *kwá* > *kwú* > *kmú* [gmú]. "Cat" is another diffused term that provides an *obstruent+w* cluster, although the source language is hard to identify in this case (see Table 10 and accompanying footnote). See Online Appendix 4 for details about nasality in Dakotan and newly formed nasal consonants in Ponca.

Summary of the Siouan facts

We will not discuss here other phenomena pertaining to nasalization in Siouan, such as the nasalization of syllable-final stops in modern Lakhota, and the absence of any phonological feature of nasality in Crow and Hidatsa: those fall outside the scope of the present article. To summarize the facts presented above: we have seen that in the Siouan language family the spread of nasality from vowels to consonants and from consonants to vowels has taken place differently at different times in different subgroups and languages:

Period 1: Early Siouan, probably around 3,000 years B.P. (Rankin 2006). The pattern was right-to-left nasalization: a sonorant preceding a nasal vowel was affected if it was not preceded by another consonant and if the nasal vowel was not followed by /h/. This change affected all Siouan languages.

Period 2: Nasalization spread to preceding sonorants in consonant clusters when the initial member of a cluster was /s/ or /ʃ/ but not /k/ or /x/. This change affected all Mississippi Valley Siouan languages and Mandan, e.g. MVS *sni* "cold", Mandan /sní/.

Period 3: Nasal assimilation extended to clusters of velar + *r*. The change /kr, xr/ > /kn, xn/ preceding a nasal vowel took place in Mandan, Dakotan and Quapaw.
separately, since these three languages do not form a subgroup together. Iteration extended to both members of /wr clusters preceding a nasal vowel in Dakotan and Mandan, again separately. Iteration stopped at cluster boundaries in Dakotan but proceeded leftward in Mandan until an obstruent or word boundary was reached, Dakotan /jam\ni/, Mandan /n\m\ni/ “three” (note vowel epenthesis), both from /raw\iri/ from a single nasal vowel in word-final position.

Period 4: MVS borrowings of “bow” and “beans” (see Tables 14 and 15 in Online Appendix 4), between the 5–10th centuries, included left to right nasalization of vowels following a nasal consonant, i.e., oral vowels following a nasal consonant in the source languages were interpreted by Siouan speakers as nasal vowels (this is structurally similar to the situation observed in Maxacali, see Wetzel 2009).

Period 5: After the relatively recent breakup of common Dhegiha Siouan into Omaha-Ponca, Kansa, Osage and Quapaw, Omaha and Ponca developed new /m/ and /n/ from older, apparently oral sonorant clusters. These new nasal consonants can appear preceding oral vowels, e.g., /m\i/ “spring” (the season), /p\mu\i/ “down hill”, /mu/ “man”, /neg\i/ “mother’s brother”, /ner\i/ “urine” (Shea & Williams 2009; other examples are found in Table 13 of Online Appendix 4). As these examples show, the new nasals are not restricted to appearing preceding the peripheral vowels /\i/, /\a/ and /\o/ ~ /\i/. In Dakotan and most other Siouan languages /e/ and /o/ raise to /i/ and /a/ when they assimilate nasalization.

Period 6, very recently: Modern Ponca extends nasalization from the new /m/ and /n/ to following /i/ or /a/. It is notable that this nasalization only affects the two vowels that can normally be nasal vowels in Ponca. Reflexes of the two mid vowels, /e/ and /o/, remain oral (Omaha and Ponca /u/ is the regular reflex of Proto-Siouan *o).

3. General discussion

3.1 Theoretical background: The search for panchronic laws of sound change

The method applied in the case studies presented above is none other than the classical method of historical phonology. However, beyond case studies, one of the goals of comparative linguistics is to assemble data that lead to an inventory of the common types of sound change and to an improved understanding of the conditions under which they occur; it appears useful to clarify how we aim to contribute to that inventory and understanding. We will present our theoretical backdrop, Panchronic Phonology, through a brief discussion of Evolutionary Phonology and structural approaches to diachronic phonology.

All rights reserved
Evolutionary Phonology, building on Ohala 1989, considers phonetic variation as the primary source of phonological change (Blevins 2004, Blevins & Wedel 2009, also Smith & Salmons 2008). This emphasis on the phonetic bases of change encourages a continuous dialogue between experimental phonetics and historical phonology which is definitely profitable to both. However, the role played by phonetic factors may be slightly overestimated by this approach. Let us take nasality as an example. The temporal extension of nasality typically exceeds the duration of one single segment in ordinary speaking style: from a phonetic point of view, nasality tends to spill over to neighboring segments. Velum lowering tends to be anticipated, and nasal airflow tends to extend beyond the nasal segment. The aerodynamic study of the variability of nasal sounds in spontaneous speech brings out numerous cases of anticipation and carryover of nasal airflow, including an overwhelming proportion of cases of nasal carryover in NV sequences (Basset et al. 2001 on French). There is no reason to think that nasal consonants were any less phonetically variable in the past history of the Romance languages; however, despite the considerable potential for change revealed by phonetic studies, initial nasals are stable throughout their recorded history.

Hypothesized universals of language change based on phonetic properties seldom stand close scrutiny, for example the hypothesis that distinctive nasalization develops preferentially in the context of low vowels (see Hombert 1986:360 and references therein). A survey shows that low vowels are preferentially nasalized in some languages, and high vowels in others (Hajek & Maeda 2000). There exist competing phonetic tendencies; they do not have explanatory or predictive power when it comes to individual cases (Labov 1994:601, and the critical assessment of Evolutionary Phonology by Andersen 2006: 168–171). Clearly, the existence of a pool of phonetic variation is only part of the thoroughly complex story of diachronic sound change.

Structural approaches to diachrony study the way in which phonological systems respond to the causes of change (in particular Martinet 2005). A major source of change is the constant competition between the tendency towards phonological integration and the tendency towards phonetic simplicity. Phonological economy tends to fill structural gaps in phonological systems, and phonetic economy tends to create phonological gaps. A simple example can be drawn from phonemic inventories: having a contrastive nasal counterpart to each oral vowel is phonologically economical (as the feature of nasality is used to the greatest possible extent) but phonetically uneconomical, because the distinction between a large number of nasal vowels is perceptually difficult (see Online Appendix 3 for a brief review of phonetic facts).

Out of the pool of potential changes, the actual direction of evolution observed in a given language depends in part on the state of its phonological system, e.g. — again taking nasality as an example — which nasal phonemes it possesses
(among consonants and vowels), which phonotactic constraints they are subject to, and what functional load they have in the system. For instance, the change from /m/ to /m̃/ and finally to /b/ is found only in languages that have distinctive nasal vowels: a NV-vs.-NV opposition may evolve to NDV-vs.-NV and then to DV-vs.-NV, e.g. /na/ vs. /nã/ changing to /ña/ vs. /ñã/ (and eventually /da/ vs. /dã/). The insertion of an oral stop blocks the propagation of nasality from N onto the following vowel, a propagation which would threaten the opposition between NV and NV (Haudricourt 1970); this has been described as “perceptual reinforcement of the orality of a neighboring vowel” (Hyman 1975:256, 259, on the creation of contour consonants out of nasal ones, see Weitels 2008, 2010).

The recognition of the relevance of structural facts to phonological change has a bearing on long-term research perspectives, such as the elaboration of a database of sound changes. From a structural perspective, such a database should contain detailed information on the state of the phonological system before and after each sound change, including an inventory of phonemes and quantified information on their functional load, as well as a phonotactic description. What is needed is an approach that attempts to formulate generalizations about sound change that are independent of any particular language or language group. Haudricourt (1940, 1973) labels such an approach Panchronic Phonology (see also Hage & Haudricourt 1978). Panchronic laws are obtained by induction from a typological survey of precise diachronic events whose analysis brings out their common conditions of appearance. In turn, they can be used to shed light on individual historical situations. Let us consider two examples of panchronic regularities. The first is from Haudricourt’s programmatic 1940 article: there is a potential for the change from word-initial /st/ to V(owel)/+st/- when the following four conditions are met: (i) initial /st/ is not significantly more frequent than V+/st/; (ii) V+/st/ is allowed in word-final position; (iii) there is no word-initial stress; (iv) if the word where the change is to occur has N syllables, words with N+1 syllables must be allowed in the language. The second example is the modeling of the transphonologization of the voicing opposition among initial consonants (Haudricourt 1965, Perlus 1979). After evolving into an opposition between phonation types on the following vowel (breathy voice vs. modal voice), this opposition becomes tonal if the language

9. We hasten to add that the emphasis on structural factors by no means implies a lack of interest in social factors (as studied by Labov 2001), from language contact (e.g. Weinreich 1953, Trudgill 1986) down to the level of individual, stylistic choices (Fomag 1983, 2001).

10. This phenomenon of diachronic transphonologization (restructuring of a system) is to be distinguished from synchronic variation, as reported e.g. in Central Rotokas (Firchow & Firchow 1969; see also Robinson 2006) and Pirahã (Everett 1986), which have neither nasal consonants nor nasal vowels in their extremely small phoneme inventories.

All rights reserved
already had tones (creating a split in the tone system); otherwise it becomes a vowel quality opposition, creating a two-way split in the vowel system. This model is verified in numerous East and Southeast Asian languages; it has recently been applied to the reconstruction of Old Chinese, supplementing the model to include oppositions between single and geminate onsets as another diachronic source for phonation-type register oppositions (Ferlus 2009).

We adopt the term ‘panchronic’ to describe our approach because we consider that the explicit research program defined by Haudricourt holds promise of an increasing degree of precision and explicitness in modeling historical change. The aims and methods of many researchers in historical phonology are actually close to this program (for detailed epistemological discussion, see Mazaudon & Michailovsky 2007). Labov’s generalization that “In chain shifts, peripheral vowels become more open and nonperipheral vowels become less open” (1994:601) can be considered as a panchronic statement, as can several of the generalizations about nasal states and nasal processes proposed by Hyman 1975: they aim to explain synchronic states in terms of the processes that lead up to them, and to arrive at general laws of sound change. We believe that, in practice, these common goals are more important than theoretical differences. From the data and analyses in Sections 1 and 2, practitioners of Panchronic Phonology, Evolutionary Phonology or other approaches to historical phonology would draw essentially the same conclusions — to which we now proceed.

3.2 Conditions on the transfer of nasality from a vowel to a preceding consonant

The case studies presented in this paper show that the transfer of nasality between a complex consonantal onset and a vowel can take place in both directions — from C to V, but also from V to C. This implies that, given a correspondence such as (C)NV :: (C)CV between two languages (where C stands for a non-nasal consonant), one cannot immediately assume that (C)NV is more conservative. The possibility that nasality could come from the vowel has to be considered.

However, it appears possible to determine the direction of evolution on the basis of the combinatorial properties of nasal sounds in the languages at issue. The

11. Here is an example of a seemingly irreducible theoretical difference which is in fact of little consequence. In Evolutionary Phonology, phonological categories are considered to belong to a universal grammar (Blevins 2004:55), whereas under a structural-functional approach such as Panchronic Phonology, phonological categories are considered to be shaped by the set of relations within the language’s system, and by usage, and are thus ‘emergent’ in the sense of Bybee 2001. In practice, however, the notion of emergence arguably plays a more prominent role than universally-defined categories in research in the framework of Evolutionary Phonology.
hypothesis that we propose in light of the history of nasality in Siouan is that the change CV > NV only occurs in languages without an opposition between NV and NV. This offers a means of discriminating between three scenarios (1a, 1b, and 2) illustrated by Breton, Sino-Tibetan and Siouan, respectively.

Scenario 1a. Both languages have nasal vowels and oppositions between NV and NV syllables. The proto-language likewise had nasal vowels and an opposition between NV and NV syllables.

<table>
<thead>
<tr>
<th>Correspondences</th>
<th>Language 1</th>
<th>Language 2</th>
<th>Proto-language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)NV</td>
<td>(C)RV</td>
<td>*(C)NV</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>CV</td>
<td>*CV</td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>NV</td>
<td>*NV</td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>NV</td>
<td>*NV</td>
<td></td>
</tr>
</tbody>
</table>

Scenario 1b. Nasal vowels are absent from one of the two languages, and highly restricted in the other. The proto-language did not have nasal vowels.

<table>
<thead>
<tr>
<th>Correspondences</th>
<th>Language 1</th>
<th>Language 2</th>
<th>Proto-language</th>
</tr>
</thead>
<tbody>
<tr>
<td>*(C)NV</td>
<td>(C)RV</td>
<td>*(C)NV</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>CV</td>
<td>*CV</td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>NV</td>
<td>*NV</td>
<td></td>
</tr>
</tbody>
</table>

Scenario 2. Neither of the two languages has an NV-vs.-NV opposition (except marginally: in loans, in expressive words, or in morphologically restricted contexts). The proto-language lacked NV-vs.-NV oppositions, or lacked nasal consonants altogether.

<table>
<thead>
<tr>
<th>Correspondences</th>
<th>Language 1</th>
<th>Language 2</th>
<th>Proto-language</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>CV</td>
<td>*CV</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>NV</td>
<td>*CV</td>
<td></td>
</tr>
<tr>
<td>NV ~ NV</td>
<td>NV</td>
<td>*NV</td>
<td></td>
</tr>
</tbody>
</table>

Under the most extreme version of scenario 2, the proto-language lacks contrastive nasal consonants altogether. This should be viewed as an extreme along a continuum, not as one of two terms within a binary opposition. Languages without

12. A special configuration is that of languages where the domain of nasality is the morpheme. All the examples known to us are from Native American languages: see Gomez-Imbert 1980, Peng 2000, Rose 2008, Wetzel's 2009 and Epps 2008:86 (which presents some comparative reflections on this topic) on Amazonian languages, Harms 1985 on Epena Pedee (Choco family, Pango, Pango, Pango, Pango, Pango).
phonemic nasal consonants all have synchronic rules of consonant nasalization from a neighboring nasal vowel in the first place. The statement that a language does not have phonemic nasal consonants is an abstract one: "A vowel system can be contrastive for nasality only if there are output nasal consonants" (Hyman 2008:101). The transfer of distinctiveness from a nasal vowel to a preceding consonant is structurally easy in such a system; the existence of simple paths towards the emergence of nasal consonants as distinct phonemes (as illustrated by some Siouan languages) goes some way towards explaining why languages with nasal vowel phonemes and without nasal consonant phonemes are fairly rare: only sixteen are listed in the UPSID database (Maddison 1984).

A less extreme version of scenario 2 involves languages with nasal consonants but without NV-vs.-NV oppositions. This situation is illustrated by Lakhota: recall from example (4) in §2 that nasalization spreads regressively in stem-final position within a verb phrase. While the regressive spread of phonological nasality in Lakhota does neutralize some contrasts between CV and NV, its consequences remain limited because Lakhota does not contrast e.g. /mɪ/ and /mɪ/. Other examples include the Hare dialect of Slave (Athabaskan family), where the phonemes analyzed as /m/ and /n/ denasalize in front of oral vowels, except for three prefixes (Rice 1989:60–61). This results in the quasi-absence of /NV/ sequences (where V is an oral vowel), at least in the surface forms. Given such a configuration, the field of allophonic phonetic dispersion of /NV/ sequences can safely range into the empty phonetic slot, viz. nasal consonant + oral vowel (Rice 1989:148).

The hypothesis underlying the distinction between scenarios 1a-b and 2 can be formulated as follows: the change CV → NV can only take place after the neutralization of nasality oppositions in nasal-initial syllables, NV and NV. (A brief phonetic discussion of this topic is proposed in §3 of Online Appendix 3.)

Colombia) and Marlett 1992 on Mixtec. Cayuva, an extinct language of Bolivia, also appears to belong to this type, as far as one may judge from the description by Key 1961. In addition to Key's observation of a pervasive tendency "for nasalization to spread over some of the adjacent segments" (p. 147), there are two structural arguments: (i) the language has [k] but neither [g] nor [i], as predicted by the hypothesis that nasals and voiced stops are allophones; and (ii) any oral vowel has a nasal counterpart, which is unusual in languages where nasality is a feature of segments (see Online Appendix 3).

The case of Ikwere is especially well-documented (Clements & Osu 2005); see also the cross-language discussions of nasal harmony by Piggott 1997, Walker 1996, and Clements & Osu 2003. A limitation of statistics based on UPSID or similar databases is that there exist several options for the interpretation of the phoneme system of languages that have no opposition between voiced stops and nasal consonants, especially in languages of the Americas.

Other examples of this type include Yoruba (as analyzed by Pulleyblank 1988:258–259), which has CV, CV, NV but no NV.
This means that, in a language that contrasts /b/ and /m/, and /a/ and /ã/, a confusion between /bã/ and /ma/ could only take place after the confusion of /mã/ with /ma/. The confusion of CV and NV would entail large-scale lexical confusions; such a change, though not impossible, can be predicted to require highly specific conditions, such as intense language contact. Note that this generalization concerns regular phonetic change, not morphosyntactically conditioned alternations, which can constitute special cases.

Needless to say, this empirical generalization, based on the languages that we were able to take into account, needs to be verified and refined in light of the greatest possible number of attested cases of nasalization.

3.3 Conditions on the transfer of nasality from a complex consonantal onset to a following vowel

This last part of the discussion recapitulates some structural observations about the processes studied in §1.

3.3.1 Two paths of lenition of obstruent+nasal initial clusters
When an obstruent+nasal onset simplifies, either the initial obstruent or the medial nasal can undergo lenition. This phenomenon of lenition tends to affect all the obstruent+obstruent and obstruent+nasal clusters in the language.

Two pathways of lenition can be distinguished.

Process 1. Lenition of medial nasal. If lenition affects medial/s, /m/ and /n/ change to /w/, and /n/ changes to /r/ (itself often turning to /l/ or /l/ in a later evolution). Distinctive nasality being transferred either to the following vowel or to the preceding obstruent.

Process 2. Lenition of cluster-initial C. The lenition of the initial consonant in a CN cluster results in the creation of devoiced nasals.15 It can be followed by (i) the transfer of distinctive nasality from the consonant to the following vowel, yielding /hV/, or (ii) by a merger of devoiced nasals with voiced nasals, as in English.

15. While this process of lenition is the most common origin of voiceless nasals, there also exists a second trajectory leading to voiceless nasals. In Siouan, nasalization goes in the opposite direction: Kansa /hm/ /mm/ < /m/ < *sr: “cold.” (The actual articulation in Kansa is a voiceless nasal — the air is expelled through the nose.) The conditioning of the direction of change lies in the phonotactic restrictions on nasal sounds, as discussed in §3.2. Interestingly, fricative-plus-/r/ sequences (*sr, *fr + V) are the clusters that nasalize most consistently in Siouan. No Siouan language has a non-nasal reflex of *r after /s, f/ and preceding a nasal vowel. As noted in §2, the *xV cluster is different, and often fails to nasalize the /r/. Data on more languages will be necessary to analyze the difference in evolutionary potential between these two types of clusters.
Stop+nasal initial clusters in English are only found in rare loanwords such as *timesis, Pmyx* and *Pnom Penh*. Middle English */kn/- and */gn/- simplified to */n/- in most dialects (there were no */km/-, */kn/-, */gm/- or */gn/- clusters); *know* is homophonic with *no* */nəʊ/, *gmat* with */næmt/, etc. Dialectal evidence suggests that the change was either */kn/ > */kŋ/ > */tŋ/ > */tŋ/ > */kn/ or, more directly, */kn/ > */kŋ/ > */ŋ/ > */n/ (Jespersen 1928:352).

Returning to the lenition of the initial consonant in a CN cluster, some differences are expected for fricative (or trill)+nasal and for stop+nasal. In the former case, the outcome is expected to be a devoiced nasal (sometimes called a 'preaspirated nasal'). In the latter case, the outcome of lenition appears to depend on the type of C-to-N transition, as explained below.

3.3.2 The phonetic transition from oral obstruent to nasal and the outcome of lenition: */h/ or */ʔ/

The lenition of obstruent+nasal initial clusters as illustrated by Sui (§1.1) yields */ŋ/, where °G stands for a glottal articulation: either an unvoiced fricative */h/ or a glottal constriction */ʔ/, so that °G/ means either of */N/ or */N/. What are the factors conditioning one or the other type of glottal articulation? Both developments are attested across languages — indeed, sometimes within the same language — so that neither of the two can be considered exceptional.

A hypothesis based on suggestions by Michel Ferlus and Larry Hyman (p.c.) is that the direction of evolution (towards either aspiration */h/ or constriction */ʔ/) is determined by the timing of the gestures for the obstruent and the nasal, in particular the timing of the onset of voicing. There can be a voiceless interval between the release of the initial obstruent and the oral closure for the nasal, causing the initial obstruent to become slightly aspirated phonetically (phonetic approximation: [C+N], where C stands for an obstruent); or the transition between the obstruent and the nasal can be voiced (phonetic approximation: [CN] or [C+N]). These two types of transitions can be viewed as two extremes along a continuum of voice onset time (on this notion, see Lisker & Abramson 1964 and Cho & Ladefoged 1999). The two types are not expected to contrast with each other: at any given time, a given language has one type of transition. If the language has an unvoiced transition at the stage when the lenition of the initial occurs, the result is */N/. If it has a voiced transition (shorter voice onset time), the result is */N/ — an evolution which is reminiscent of the cross-linguistically common change from a voiceless stop coda to a glottal stop. Under this hypothesis, the presence of both */hN/ and */ʔN/ in the same language implies that the two sets developed at different times.

Support for the hypothesis of the existence of two types of transitions, and for the possibility of a rapid diachronic change from the one to the other, comes from Old Khmer. The initial clusters transcribed as T+N (km-, for instance) in
pre-Angkorian Khmer inscriptions are transcribed as T+N (for example: \(k^s_m\)) by the stage of Angkorian Khmer; a likely interpretation is that the phonetic articulation of these T+N clusters was 'schwa-like' at the former stage, and 'fricative-like' at the latter. This phonetic evolution is reflected in the transcriptions because the authors of the transcriptions based themselves on Sanskrit, which has both unaspirated stops and unvoiced aspirated stops: they chose the symbols that corresponded most closely to the phonetic realizations in Khmer.

Conclusion

From the point of view of specific language groups, the above developments make a contribution to the study of nasality in Siouan and in a subgroup of Sino-Tibetan. From the point of view of general models of sound change, they suggest an answer to the initial research issue, namely whether transfers of nasality between a consonant and a following vowel could work from C to V and from V to C. There are quite a few well-attested cases of nasalization of a vowel from a preceding cluster containing a nasal; the nasalization of a consonantal onset from a following nasal vowel is less frequent. Our interpretation of these changes is based on considerations of distributional constraints on nasal phonemes and of their functional load. Structural gaps in a system create a potential for transphonologization. In languages without phonemic nasal consonants, /CV/ > [NV] is a ubiquitous synchronic rule. In languages that have phonemic nasal consonants but no oppositions between /N\(V\)/ and /NV/, the change from /CV/ to /NV/, despite resulting in the neutralization of some oppositions, is not unheard of; however, it is usually restricted to specific morphological contexts. Finally, no case of spreading of distinctive nasality from a vowel to a preceding consonant has been found so far in languages that have an opposition between /NV/ and /NV/.

References

All rights reserved

© 2012 John Benjamins Publishing Company

All rights reserved

All rights reserved

© 2012 John Benjamins Publishing Company
All rights reserved

Résumé

Des données comparatives de plusieurs familles de langues montrent l'existence de transferts de nasalité entre un groupe de consonnes en position initiale de syllabe et la voyelle qui suit. Le
passage en revue des exemples décrits à ce jour est complété par une nouvelle analyse de données sino-tibétaines. De prime abord, il semblerait que ce transfert puisse s’opérer dans les deux sens: de l’attaque consonantique vers la voyelle suivante — en tai-kadai, en austroasiatique, en sino-tibétain, en niger-congolais (kwa) et en indo-européen (celtique) — et de la voyelle à la consonne précédente en sioux. L’examen des conditions d’apparition de ces changements révèle néanmoins une asymétrie. Le cas de figure le plus courant est que le transfert de nasalité s’opère de l’attaque consonantique vers la voyelle qui suit; les cas que nous avons pu trouver d’un changement régulier dans la direction opposée proviennent tous de langues dans lesquelles les sons nasaux connaissent une des restrictions suivantes: soit les consonnes nasales n’ont pas valeur de phonèmes (c.-à-d. que leur apparition est déterminée par le contexte), soit l’opposition entre voyelles orales et nasales est neutralisée après les consonnes nasales (en faveur de voyelles nasales).

Zusammenfassung

Authors’ addresses

Alexis Michaud
LACITO-CNRS
7 rue Guy Môquet
F-94800 VILLEJUIF, France
alexis.michaud@vjf.cnrs.fr

Guillaume Jacques
CRLAO-CNRS
EHESS
131 boulevard Saint-Michel
F-75005 PARIS, France
rgyalrongskad@gmail.com

Robert L. Rankin
University of Kansas
Department of Linguistics
1541 Lilac Lane, Blake Hall, Room 427
LAWRENCE, KS 66044-3177, USA
rankin@ku.edu

All rights reserved